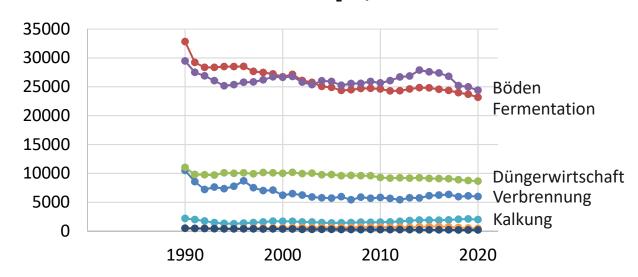

Reduzierung der Treibhausgasund Ammoniakemissionen aus der Schweinefütterung

DAFA Online-Webinar "Innovative Ansätze zur Emissionsminderung – Fokus Monogastrier"

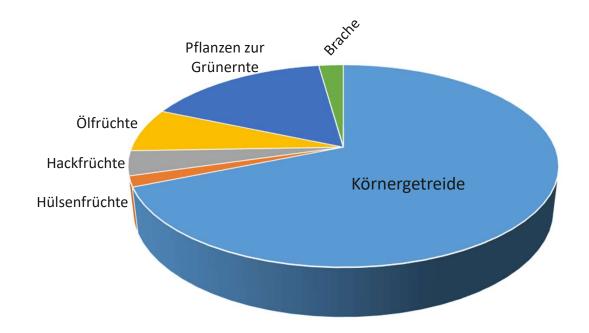
Björn Kuhla

THG-Emissionen aus der Schweineerzeugung


Gliederung

- 1. Fußabdrücke des Futtermittelanbaus
- 2. Fußabdrücke der Fermentation und Ausscheidungsprodukte

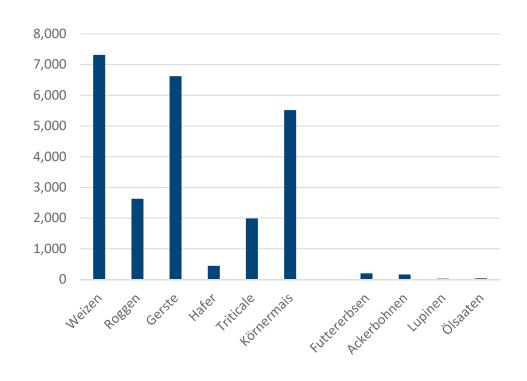
THG-Emissionen aus der deutschen Landwirtschaft


Tausend Tonnen CO₂-Äquivalente

- Anbau von Biomasse hinterlässt den größten THG-Fußabdruck
- Futtermittelanbau auf 60 % der LWNF

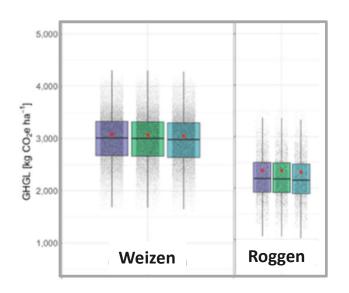
Ackerlandflächen nach Hauptfruchtgruppen (2022)

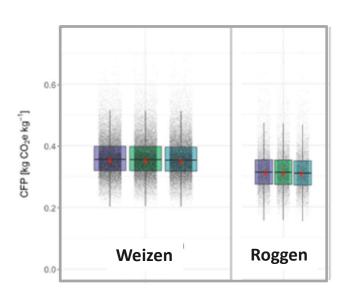
Anbau von Getreide leistet größten Beitrag zu THG-Emissionen aus Ackerböden


Futtermittelproduktion 2020/21

Die mengenmäßig wichtigste Futterkomponente in der Schweinemast ist **Getreide**.

Marktgängige Futtermittel


(in 1.000 Tonnen)



THG-Emissionen für verschiedene Futtermittel im konventionellen Landbau

CO_{2äq} pro ha

CO_{2äq} pro kg

Gerste ≥ Weizen > Roggen

Rapssamen > Ackerbohnen > Weizen

Emissionen aus Sojaanbau und -transport (2020)

- Werden nicht im deutschen Inventar gelistet
- Sojaprodukte zu > 90 % für die Fütterung von Schweinen und Geflügel

Importierte Sojabohnen

3.868 000 t (zu Futterzwecken)

davon aus Brasilien 1.444 770 t

-davon 20% aus illegaler Entwaldung (LUC)

-tw. Rückstände von Pestiziden

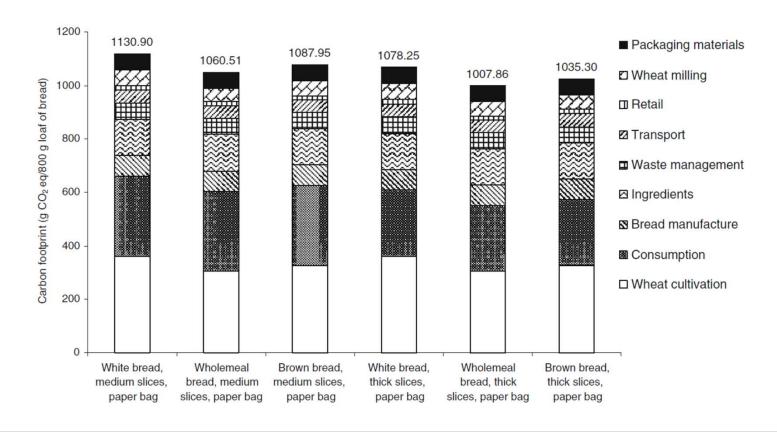
Importiertes Sojaschrot: 2.300 000 t

Exportiertes Sojaschrot: 1.800 000 t

10 Mt CO₂-eq

Inländisch

90.500 t (4%)


- 41% CO₂-eq /t

bei europäischem Anbau

Nutzung einheimischer statt importierter Eiweißfuttermittel reduziert THG-Emissionen

THG-Emissionen bei Fütterung von Reststoffen

- Etablierung von Kreislaufwirtschaft
- Verringerung der Primärproduktion

Gliederung

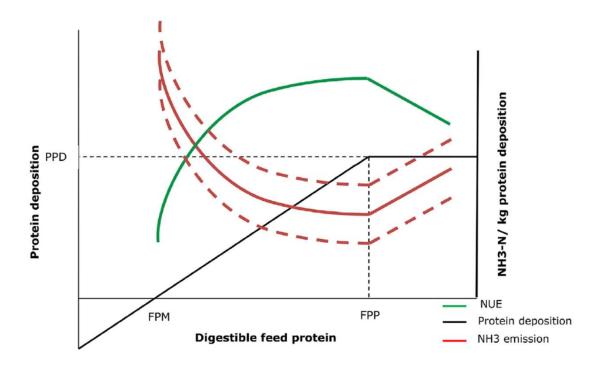
- 1. Fußabdrücke des Futtermittlanbaus
- 2. Fußabdrücke der Fermentation und Ausscheidungsprodukte

CH₄- und N-Ausscheidungen von Mastschweinen

Emissionen in Abhängigkeit der Rohnährstoffgehalte

	LP-LF	MP-MF	HP-HF
CP (g/kg)	120	160	195
NDF (g/kg)	164	226	241
CL (g/kg)	42	22	22
ent. CH ₄ (g/d)	17.0	17.6	23.2
Total N excretion (g/d)	23.4	27.4	39.5

- Verringerung der Rohfasergehalte reduziert enterische CH₄-Ausscheidung
- Verringerung der Rohproteingehalte reduziert Harn- und Kot-N-Ausscheidung


Maßnahmen zur N-Emissionsminderung

- Bedarfsorientierte bzw. N-reduzierte Fütterung
 - CP-Überversorgung unbedingt vermeiden
 - regelmäßige Leistungskontrollen
 - Beachtung der Ergebnisse der Futteranalyse
 - Vergleich Leistungsdaten und verbrauchte Futtermengen
 - CP-Unterversorgung →
 Leistungsminderung →
 Verlängerung der Mastzeit →
 Emissionssteigerung pro kg Produkt

Stickstoffnutzungseffizienz

Verbesserung der Verdaulichkeit des Futterproteins → Verbesserung der N-Nutzungseffizienz → Reduktion von N-Emissionen pro kg Körperprotein

Einfluss von Futterzusatzstoffen auf Gülleemissionen

 Zulage organischer Säuren zur Verbesserung der Verdaulichkeit der Rohasche und der Futterhygiene

Emissionen aus Gülle nach Fütterungszulage von 0,3 % Benzoesäure

	CON	CON + BS	
NH_3 (g/m ²)	18	14	
CO_2 (mg/m ²)	265	344	
CH ₄ (mg/m ²)	371	606	

Trade-off zwischen CH₄- und NH₃-Emissionsreduktion

FAZIT

- Futterbau und –import leisten größte Beiträge zu den Umwelt- und Klimawirkungen der Schweineerzeugung → einheimische Eiweißfuttermittel
- Der Verbesserung der CP-Verdaulichkeit und der Vermeidung einer CP-Überversorgung sind entscheidende Maßnahmen zur N-Emissionsminderung
- Anpassung des Rohfasergehalts der Ration an die jeweiligen Bedarfe → CH₄-Emissionsminderung

